
Document ID: MC-WP-004 Automating WCET analysis v7 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

Safety through quality

Document ID: MC-WP-004 Automating WCET analysis v7 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

W H I T E P A P E R

Automating WCET analysis for DO-178B/C

Automating WCET analysis for DO-178B/C | page i

Contents
1. Introduction 1

2. DO-178B/C requirements for WCET 2

3. Current state of practice for determining WCET 5

 3.1 What exactly is the State of Practice? 5

 3.2 What are limitations of this approach? 6

 3.3 Is it possible to improve on this approach? 6

 3.4 Advancing the state of practice – using RapiTime 7

 3.5 The RapiTime process 8

4. Using RapiTime in a DO-178C environment 9

	 4.2	Qualification	Kit	 	 10

	 4.3	Qualification	Service	 	 10

5. Want to learn more? 12

page 1 | Automating WCET analysis for DO-178B/C

RapiTime is a tool

to determine the

execution time of

embedded software.

It reports measured

maximum, high-water-

mark and calculated

worst-case times. The

WCET calculation is

based on measured

data, annotations

and the source code

structure.

To use RapiTime’s

calculated WCET in

support of DO-178B

or DO-178C objective

6.3.4f, it is necessary

both to qualify the

tool and to provide a

corresponding analysis

process.

RapiTime Determination of worst-case execution time (WCET) is an
activity that is recommended in DO-178B and DO-178C 6.3.4f.
Here we consider the current state of practice for determining
WCET and present the benefits available from automating the
process. Thanks to its DO-178B/DO-330 qualification pack,
RapiTime uniquely allows these benefits to be realised in
DO-178B/C projects.

One approach to determining WCET that is widely used and currently accepted by
certification authorities is manual analysis and measurement. Manual analysis and
measurement is an effort-intensive task and requires an extremely high level of care to
ensure measurements are correctly captured.

By using automation to reduce the level of effort required and increase the
accuracy of results, RapiTime represents an evolution of the manual analysis
and measurement approach. With the introduction of the DO-178B/DO-330
qualification pack, RapiTime can replace manual activities in projects requiring
DO-178B/DO-178C certification. The development of the new qualification pack means
RapiTime is the only tool in the marketplace capable of measurement-based WCET
analysis for DO-178B.

In this document, we describe:

• What is required for WCET in DO-178B projects.

• The current state of practice, and its limitations.

• How RapiTime represents an improvement on the state of practice.

• How to use RapiTime in a DO-178B environment.

1. Introduction

Automating WCET analysis for DO-178B/C | page 2

Worst-Case
Execution Time

Simply put, the

worst-case execution

time (WCET) of a

computational task

is the maximum

length of time the

task could take to

execute	on	a	specific	

hardware platform.

This excludes any time

spent executing other

tasks or interrupts.

DO-178B (and the newer DO-178C) recommendations address
many considerations in the development of embedded, real-
time software. Timing of software is no exception.

In DO-178B/C, there is no single objective that is solely concerned with timing. However,
two objectives include timing considerations, as shown in Table 1 (see pg 5).

In DO-248B (‘Final Report for Clarification of DO-178B “Software Considerations
in Airborne Systems and Equipment Certification”’), a frequently asked question
addresses WCET:

3.73 FAQ #73: ARE TIMING MEASUREMENTS DURING TESTING SUFFICIENT
OR IS A RIGOROUS DEMONSTRATION OF WORST-CASE TIMING
NECESSARY?
Reference: ED-12B/DO-178B: Sections 6.3.4 and 11.20
Keywords: timing; worst-case timing

Answer:

In addition to verifying that the software requirements relating to timing have
been met, ED-12B/DO-178B states that the worst-case timing should be
determined. Section 6.3.4f of ED-12B/DO-178B states that as part of meeting
the verification objective of the source code being accurate and consistent, the
worst-case timing should be determined by review and analysis for Levels A, B,
and C software. The results of this review and analysis should be documented
in the Software Accomplishment Summary as timing margins (reference Section
11.20d of ED- 12B/DO-178B).

The worst-case timing could be calculated by review and analysis of the source
code and architecture, but compiler and processor behavior and its impact also
should be addressed. Timing measurements by themselves cannot be used
without an analysis demonstrating that the worst-case timing would be achieved,
but processor behavior (e.g. cache performance) should be assessed. Using the
times observed during test execution is sufficient, if it can be demonstrated that
the test provides worst-case execution time.

2. DO-178B/C requirements for
WCET

page 3 | Automating WCET analysis for DO-178B/C

It is important to note the last sentence: Timing measurements by themselves cannot
be used without an analysis demonstrating that the worst-case timing would be
achieved. In other words, testing alone is not adequate for demonstrating worst case
execution times – some form of analysis is also required.

Entry A-5, 6 is concerned with reviews and analysis of the source code. It is assumed
that, although the items in table A-5 are typically review items, analysis may include
some dedicated testing of the source code to substantiate its properties. The timing
aspects of 6.3.4f are indicated as below:

6.3.4f: Accuracy and consistency: The objective is to determine the correctness and
consistency of the Source Code, including […] worst-case execution timing […]

Entry A-6, 5 is concerned with requirements-based hardware/software integration
testing. The software should be tested both for conformance to the requirements
and for specific error sources associated with operation within the target computer
environment. The timing aspects of 6.4.3a are indicated as below:

6.4.3a: Requirements-Based Hardware/Software Integration Testing: This testing
method should concentrate on error sources associated with the software
[…] Typical errors revealed by this testing method include:

 […]

- Failure to satisfy execution time requirements.

 [...]

Objective Applicability (DAL) Output

ID Description Ref. A B C D Description Ref.

A-5,
6

Source Code is
accurate and
consistent.

6.3.4f Software
Verification	
Results

11.14

A-6, 5 Executable Object
Code is compatible
with target
computer.

6.4.3a Software
Verification	
Cases and
Procedures

Software
Verification	
Results

11.13

11.14

 Objective required at DAL
 Objective required with independence at DAL

Table 1. Timing considerations in DO-178B/C objectives

Automating WCET analysis for DO-178B/C | page 4

Number of
observations

Observed
execution times

Longest observed execution
time (high watermark)

End-to-end
execution
time

Average execution
time

Shortest observed execution
time (low watermark)

Worst-case
execution time

Figure 1 – Software timing characteristics

page 5 | Automating WCET analysis for DO-178B/C

Despite research over

the last fourty years,

there is no way to

find	the	exact	worst-

case execution time

(the “actual WCET”)

for any reasonably

large piece of code

running on modern

processor. Instead, the

aim of WCET analysis

when applied in the

context of engineering

projects must be to

find	a	useful	and	valid	

approximation of the

actual WCET.

Actual WCET
or Estimate?

Rapita Systems regularly talks to companies that develop
avionics systems under DO-178B. We have come to recognize
that, although there is variation in state of practice for
determining WCET, there is a frequently used approach that is
applied and certified in many avionic systems.

3.1 What exactly is the State of Practice?
The manual, measurement-based approach frequently used in the avionic industry
typically follows these steps:

1. Put some form of instrumentation in at the start and end of the unit we’re interested
in finding WCET for:

• Unit could be a task (i.e. put instrumentation in as first statement of task and
last statement of task).

• Unit could be a complete partition.

• Unit might be a section of code.

• Instrumentation is a mechanism that is added to the code running on the target
that measures the time spent executing regions of code. Most commonly,
instrumentation consists of specific instructions added to the code.

2. There are many approaches to implementing instrumentation. For example,
instrumentation might:

• Toggle an externally visible I/O pin – this could be observed with an oscilloscope
or a logic analyzer.

• Additional code might record the start time and stop time of specific code
units. This could then be recorded in memory and retrieved subsequently to
derive the high water mark, maximum and minimum execution times.

3. Current state of practice for
determining WCET

Automating WCET analysis for DO-178B/C | page 6

Optimistic vs.
Pessimistic

Computed WCET

Techniques for

calculating WCET

estimates may be

optimistic or

pessimistic. An

optimistic value is one

that is less than the

actual WCET. Likewise

a pessimistic value

is one that is greater

than the actual value.

Typically, WCET

analysis techniques

introduce pessimism,

so much of the work

in WCET analysis

is to reduce that

pessimism so that the

result is practical.

3. Manually review the code to attempt to identify worst-case paths through the
source code.
Note: this is important to meet the requirement from DO-248B FAQ 73.

4. Devise test cases to drive code through these paths.

5. Record the time taken to execute the code. Frequently, a “safety margin” is added
to this value.

3.2 What are limitations of this approach?
• Identifying worst-case paths through code is difficult and effort-intensive:

• Predicting which areas of code are responsible for large execution times isn’t
easy.

• A simple assignment statement (especially in C++ or Ada) might result in a
significant number of operations if copying a complex data structure.

• Some complex-looking groups of statements might be aggressively optimised
by the compiler.

• This approach is highly likely to lead to an optimistic WCET (see sidebar). On the
positive side, this approach will never report a pessimistic WCET.

• If the running time of the application exceeds its timing budgets, this approach
doesn’t support the engineer in identifying exactly where to address the problem:

• Most of the code will not affect the worst-case and can be ignored. If we don’t
know which code is in this region, we’re wasting time looking at it.

• Some code will affect the worst-case slightly – reducing execution time of this
code will have a marginal effect.

• A small part of the code will have a significant effect on WCET. Finding this code
with a manualapproach is difficult.

3.3 Is it possible to improve on this
 approach?

There are three ways in which the manual approaches can be improved through
automation:

1. Make the results much less optimistic/more realistic.

2. Reduce the effort required to identify good test cases. This reduces the risk of
reporting a WCET value that is exceeded during actual use.

3. Provide assistance in identifying which parts of the code affect WCET the most.

page 7 | Automating WCET analysis for DO-178B/C

How instrumentation
points generate a trace

A trace is constructed

by executing

instrumentation

points. At each

instrumentation point,

we need to collect

an	identifier	and	a	

timestamp. Many

different	approaches	

to	collecting	identifiers	

and timestamps exist,

depending on your

target hardware.

The most common

approach is to write

an	identifier	to	an	

I/O port or externally

visible address or

data bus; then use

a logic analyzer or

Rapita’s RTBx to

read the value and

collect a timestamp.

Instrumentation can

be implemented in

one or two machine

instructions.

3.4 Advancing the state of practice –
 using RapiTime
RapiTime, part of Rapita Verification Suite (RVS), builds on the current state of
practice, automating the process we have previously described.

The areas of the process RapiTime automates are:

1. Instrumentation of source code:

• As part of the integration phase, the RapiTime source code instrumenter is
inserted into your build process.

• Instrumentation is customizable: you can choose whether to instrument to
every decision point in your code, at the level of top-level functions only, or at
multiple levels between this.

• During instrumentation, RapiTime also derives a structural model of the code
– it uses this when it identifies worst-case paths.

2. Mapping timing data back to source code:

• As you run tests on the instrumented code, your target produces a trace
(a time-stamped list of Ipoint identifiers that have been encountered).
RapiTime will automatically relate the Ipoint identifiers to decision points in
the code, and consequently determine the execution time of segments of
code.

• In this process RapiTime also provides a number of timing measurements of
individual blocks of code and sub-programs, including minimum and maximum,
as well as the high-water mark. This represents the longest observed execution
of the code.

• RapiTime combines the structural model of the code derived during
instrumentation with the timing data it derives from the execution trace. Using
this combined data, RapiTime predicts the worst-case path through the code
and the worst-case execution time.

To do this, we recommend RapiTime be used as follows:

• Using an initial set of tests, use RapiTime to determine a worst-case execution
path for your system (Instrument, run tests, run analysis).

Automating WCET analysis for DO-178B/C | page 8

When performing

worst-case execution

time analysis,

RapiTime reports

computed WCET.

The computed WCET

combines the longest

observed execution

times with the longest

predicted paths.

RapiTime’s
computed WCET

3.5 The RapiTime process
• You can use RapiTime’s predicted worst case path to create a test case that takes

as long to execute as the computed WCET.

• If the high water mark is less than the worst-case execution time, you can improve
the testing and analysis by:

• Eliminating infeasible paths by introducing annotations.

• Finding tests that drive the code through the worst-case path.

• Simplify the source code.

• Repeat this process (Figure 2) until the two values are within an acceptable
tolerance of each other.

The benefits of using RapiTime in a process similar to the above are
as follows:

1. Improving results. Instrumenting code at a more detailed level than is possible
by hand means that the timing measurements are more precise than previously
achievable.

2. Reduced effort required to identify good test cases. Automating the detection of
the worst-case path, based on evidence from testing, is significantly faster than
attempting to manually determine worst-case paths.

3. Identify parts which affect WCET most significantly. If it is necessary to reduce the
worst-case execution time, automatic detection of “hot-spots” provides evidence
to support specific optimizations.

Stop
Identify

differences	
in paths

Instrument
and build

Run tests

Run analysis

Change tests

Computed	WCET	≈	HWM Computed	WCET	>>			HWM

Introduce
new analysis
annotations

Figure 2 – The RapiTime process

Simplify source
code

page 9 | Automating WCET analysis for DO-178B/C

According to the guidance of DO-178C/DO-330, a software tool
used on your project needs to be qualified if:

• The tool could fail to detect an existing error.

• The tool’s output could not be verified by another activity.

• Processes are eliminated, reduced or automated by the tool.

RapiTime meets these criteria, so it needs to be qualified.

To qualify RapiTime within your project, you need to provide key information about
the tool (Table 2). Some of this information represents general information about
RapiTime (for example the Tool Operational Requirements), while other information
is specific to using RapiTime in your system, for example the tool V&V records, which
include test results from testing your installation of RapiTime in your environment.

4. Using RapiTime in a DO-178C
environment

Figure 3 – DO-178B/C qualification kit

Automating WCET analysis for DO-178B/C | page 10

Table 2. Tool qualification information required for DO-178C

To support your use of RapiTime in a DO-178C project, we provide qualification
support through a qualification kit and service.

We provide two main options for supporting tool qualification within avionics projects:

4.1 Qualification Kit
This includes generic evidence to demonstrate that RapiTime meets its requirements
in a generic environment. Our qualification kits are based on DO-330: Software Tool
Qualification Considerations.

4.2 Qualification Service
Our Qualification Service provides tests you can run to show that the integration of
RapiTime with your specific platform is robust, along with expected results from these
tests. When delivering the service, Rapita Engineers work with you to run the tests and
review results.

Item DO-178C
reference

DO-330
reference

Usage

PSAC (Plan for Software Aspects of
Certification)

12.2,
12.2.3.a,
12.2.4

1.3c Submit	to	Certification	Authority	
(CA, e.g. FAA) early to discuss
timescale and acceptable
qualification	methods	and	
documentation approaches

TOR (Tool Operational Requirements) 12.2.3.c(2),
12.2.3.2

5.1 Must be available for review by CA

TAS (Tool Accomplishment Summary) 11.20,	
12.2.4

10.1.15 Optional,	but	simplifies	production	
of PSAC , Submit to CA

TVR	(Tool	Verification	Results) 12.2.3 12.2.3 Must be available for review by CA

TQP	(Tool	Qualification	Plan)	 12.2.3a(1),
12.2.3.1 and
12.2.4

10.1.2 Optional,	but	simplifies	production	
of PSAC

page 11 | Automating WCET analysis for DO-178B/C

Item DO-178B reference Qualification
Kit

Qualification
Service

Developer
documents

TQP and TVR ✓ ✓

TQP and TAS ✓ ✓

Configuration	Assessment	Guide ✓ ✓

Reference
documents

User	Guides	 ✓ ✓

Installation	Guide	 ✓ ✓

Troubleshooting	Guide ✓ ✓

Recommended	Workflow ✓ ✓

Tool user
documentation
templates

TQP and TVR ✓ ✓

TQP and TAS ✓ ✓

Additional
support

Ongoing assurance impact assessment ✓ ✓

Configuration	testing ✓

Consultation assessment ✓

Consultation, liaison, assurance analysis ✓

 Table 3. RapiTime Tool Qualification Options and Components

Automating WCET analysis for DO-178B/C | page 12

5. Want to learn more?
If you want to learn more about worst-case execution time, visit our website where you
gain access to a wide range of white papers and videos on the topic.

www.rapitasystems.com/worst-case-execution-time

Rapita Systems regularly releases new material and runs training courses on multicore
timing analysis worldwide. To make sure you’re notified, sign up to our mailing list.

www.rapitasystems.com/newsletter

Item DO-178B reference Qualification
Kit

Qualification
Service

Developer
documents

TQP and TVR ✓ ✓

TQP and TAS ✓ ✓

Configuration	Assessment	Guide ✓ ✓

Reference
documents

User	Guides	 ✓ ✓

Installation	Guide	 ✓ ✓

Troubleshooting	Guide ✓ ✓

Recommended	Workflow ✓ ✓

Tool user
documentation
templates

TQP and TVR ✓ ✓

TQP and TAS ✓ ✓

Additional
support

Ongoing assurance impact assessment ✓ ✓

Configuration	testing ✓

Consultation assessment ✓

Consultation, liaison, assurance analysis ✓

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant

agreement n° 249100, PROARTIS.

http://www.rapitasystems.com/worst-case-execution-time
http://www.rapitasystems.com/newsletter

About Rapita
Rapita Systems provides on-target software verification tools and services globally
to the embedded aerospace and automotive electronics industries.

Our solutions help to increase software quality, deliver evidence to meet safety
and certification objectives and reduce costs.

Find out more
A range of free high-quality materials are available at:
rapitasystems.com/downloads

Contact
Rapita Systems Ltd.
Atlas House
York, YO10 3JB
UK

+44 (0)1904 413945

Rapita Systems, Inc.
41131 Vincenti Ct.
Novi, Mi, 48375
USA

+1 248-957-9801

Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

+34 93 351 02 05

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

S U P P O R T I N G C U S T O M E R S W I T H :

Rapita Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

Engineering Services

V&V Services

Integration Services

Qualification

SW/HW	Engineering

Compiler	Verification

Multicore verification

MACH178

Multicore Timing Solution

Tools

https://www.rapitasystems.com/downloads
http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems
mailto:info%40rapitasystems.com?subject=

